If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8z^2=6z^2+38=180
We move all terms to the left:
8z^2-(6z^2+38)=0
We get rid of parentheses
8z^2-6z^2-38=0
We add all the numbers together, and all the variables
2z^2-38=0
a = 2; b = 0; c = -38;
Δ = b2-4ac
Δ = 02-4·2·(-38)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{19}}{2*2}=\frac{0-4\sqrt{19}}{4} =-\frac{4\sqrt{19}}{4} =-\sqrt{19} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{19}}{2*2}=\frac{0+4\sqrt{19}}{4} =\frac{4\sqrt{19}}{4} =\sqrt{19} $
| 28=4x-40 | | 3m+(-8)=-23m | | 51+7y+4=90 | | 4(d+3)−-7=11 | | 4(2x+2)-3x-19=x-(10x-43) | | 51+7y-4=90 | | (7x+2)+(4)=90 | | 42+2u=8u | | 180-(13x-27)=(4x+3) | | 7x+32=21 | | 4(2x+2-3x-19=x-(10x-43) | | 3x-10=2x=2x+15 | | 180-13x+26=4x+3 | | 10v=6v+36 | | 1.5=d+8 | | x2-49x+660=0 | | x^2+30=24x-144 | | 9y-6-5y+1=0 | | 20+2x=150 | | 90-x=261 | | (13x-26)+(4x+3)=180 | | -98=-2(1-6r) | | 3h-7=32 | | 1/2(x−32)=36+7x | | 9-3+x=21 | | 219=76-v | | 6u=u=15 | | 6u=u15 | | 7x+18=x-42 | | 8=2+w/2 | | 3x-7+5x+2=9+6x-22 | | 5+1/3x=18 |